Simvastatin Prevents Neurodegeneration in the MPTP Mouse Model of Parkinson’s Disease via Inhibition of A1 Reactive Astrocytes

Author:

Du Ren-Wei,Bu Wen-Guang

Abstract

Emerging evidence indicates that A1 reactive astrocytes play crucial roles in the pathogenesis of Parkinson’s disease (PD). Thus, development of agents that could inhibit the formation of A1 reactive astrocytes could be used to treat PD. Simvastatin has been touted as a potential neuroprotective agent for neurologic disorders such as PD, but the specific underlying mechanism remains unclear. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD and primary astrocytes/neurons were prepared to investigate the effects of simvastatin on PD and its underlying mechanisms in vitro and in vivo. We show that simvastatin protects against the loss of dopamine neurons and behavioral deficits in the MPTP mouse model of PD. We also found that simvastatin suppressed the expression of A1 astrocytic specific markers in vivo and in vitro. In addition, simvastatin alleviated neuron death induced by A1 astrocytes. Our findings reveal that simvastatin is neuroprotective via the prevention of conversion of astrocytes to an A1 neurotoxic phenotype. In light of simvastatin favorable properties, it should be evaluated in the treatment of PD and related neurologic disorders characterized by A1 reactive astrocytes.

Publisher

S. Karger AG

Subject

Endocrine and Autonomic Systems,Neurology,Endocrinology,Immunology

Reference32 articles.

1. Zhu J, Hu Z, Han X, Wang D, Jiang Q, Ding J, et al. Dopamine D2 receptor restricts astrocytic NLRP3 inflammasome activation via enhancing the interaction of β-arrestin2 and NLRP3. Cell Death Differ. 2018;25(11):2037–49.

2. De Miranda BR, Rocha EM, Bai Q, El Ayadi A, Hinkle D, Burton EA, et al. Astrocyte-specific DJ-1 overexpression protects against rotenone-induced neurotoxicity in a rat model of Parkinson’s disease. Neurobiol Dis. 2018;115:101–14.

3. Lu M, Sun XL, Qiao C, Liu Y, Ding JH, Hu G. Uncoupling protein 2 deficiency aggravates astrocytic endoplasmic reticulum stress and nod-like receptor protein 3 inflammasome activation. Neurobiol Aging. 2014;35(2):421–30.

4. Trujillo-Estrada L, Gomez-Arboledas A, Forner S, Martini AC, Gutierrez A, Baglietto-Vargas D, et al. Astrocytes: from the physiology to the disease. Curr Alzheimer Res. 2019;16(8):675–98.

5. Upadhya R, Zingg W, Shetty S, Shetty AK. Astrocyte-derived extracellular vesicles: neuroreparative properties and role in the pathogenesis of neurodegenerative disorders. J Control Release. 2020;323:225–39.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3