Author:
Bai Jiuxu,Xiao Xiao,Zhang Xiaoling,Cui Hanmin,Hao Junfeng,Han Jingming,Cao Ning
Abstract
Background/Aims: Renal tubular epithelial-mesenchymal transition (EMT) is regarded as an important factor leading to renal interstitial fibrosis. Erythropoietin (EPO) has been reported to attenuate renal fibrosis. The mechanism underlying this protective effect of EPO remains unclear. In this study, we aim to identify possible mechanisms of the EPO renoprotective effect. Methods: Hypoxia was induced in vitro by incubating human proximal tubular epithelial cell line HK-2 cells in 1% O2 and 5% CO2. Western blotting and reverse transcription polymerase chain reaction analyses were used to evaluate the expression of epithelial and mesenchymal markers in the cell samples. The expression of miR-200b in the HK-2 cells under hypoxia or treatment with EPO was examined. Results: EPO represses hypoxia-induced EMT by upregulating miR-200b in HK-2 cells. Overexpression of miR-200b represses the effect of ETS proto-oncogene 1 (Ets-1)-induced EMT in HK-2 cells. Conclusion: miR-200 mediates the protective effects of EPO on EMT in hypoxic HK-2 cells. EPO attenuated hypoxia-induced EMT by increasing miR-200 expression via the repression of Ets-1.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献