Effects of MicroRNA-494 on Astrocyte Proliferation and Synaptic Remodeling in the Spinal Cord of a Rat Model of Chronic Compressive Spinal Cord Injury by Regulating the Nogo/Ngr Signaling Pathway

Author:

Wang Yuan,Sun Jing-Chuan,Wang Hai-Bo,Xu Xi-Ming,Yang Yong,Kong Qing-Jie,Shi Jian-Gang

Abstract

Background/Aims: Chronic compression of the spinal cord causes the loss of motor neurons in the anterior horn, but the precise and extensive mechanism for the loss is not completely determined. Therefore, this study aims to explore the role of microRNA-494 (miR-494) in the proliferation of astrocytes and in the synaptic remodeling in the spinal cord of a rat model of chronic spinal cord injury (SCI) by regulating the Nogo/NgR signaling pathway. Methods: A rat model of chronic, compressive SCI was established, and the spinal cord state, blood supply changes, and astrocyte apoptosis were observed. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting were used to detect expression of miR-494 and the Nogo/NgR signaling pathway-related genes. Fluorescence in situ hybridization (FISH) was used for detecting miR-494 expression and distribution. Results: Higher miR-494 expression was accompanied by the inhibition of astrocyte proliferation and synaptic remodeling. In addition, CDK6 could be regulated by miR-494 and was shown to be one of the target genes of miR-494. Positive expression of miR-494 detected by FISH was consistent with the results from RT-qPCR that miR-494 could downregulate CDK6 gene expression. Moreover, the direct miR-494 target CDK6 plays important inhibitory roles in chronic SCI by suppressing the Nogo/ NgR signaling pathway. Conclusions: The results demonstrated that miR-494 inhibition can promote astrocyte proliferation and synaptic remodeling by suppressing the Nogo/NgR signaling pathway in a rat model of chronic SCI.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3