Increased Energy Expenditure, Lipolysis and Hyperinsulinemia Confer Resistance to Central Obesity and Type 2 Diabetes in Mice Lacking Alpha2α-Adrenoceptors

Author:

Ruohonen Suvi T.,Valve Laura,Tuomainen Katja,Ailanen Liisa,Röyttä Matias,Manz Georg,Baur Nadja,Joos Thomas O.,Savontaus Eriika,Scheinin Mika

Abstract

The alpha2A-adrenoceptors (α2A-ARs) are Gi-coupled receptors, which prejunctionally inhibit the release of norepinephrine (NE) and epinephrine (Epi), and postjunctionally inhibit insulin secretion and lipolysis. We have earlier shown that α2A–/– mice display sympathetic hyperactivity, hyperinsulinemia and improved glucose tolerance. Here we employed α2A–/– mice and placed the mice on a high-fat diet (HFD) to test the hypothesis that lack of α2A-ARs protects from diet-induced obesity and type 2 diabetes (T2D). In addition, a high-caloric diet was combined with running wheel exercise to test the interaction of diet and exercise. HFD was obesogenic in both genotypes, but α2A–/– mice accumulated less visceral fat than the wild-type controls, were protected from T2D, and their insulin secretion was unaltered by the diet. Lack of α2A-ARs is associated with an increased sympatho-adrenal tone, which resulted in increased energy expenditure and fat oxidation rate potentiated by HFD. Fittingly, α2A–/– mice displayed enhanced lipolytic responses to Epi, and increased faecal lipids suggesting altered fat mobilization and absorption. Subcutaneous white fat appeared to be thermogenically more active (measured as Ucp1 mRNA expression) in α2A–/– mice, and brown fat showed an increased response to NE. Exercise was effective in reducing total body adiposity and increasing lean mass in both genotypes, but there was a significant diet-genotype interaction, as even modestly increased physical activity combined with lack of α2A-AR signalling promoted weight loss more efficiently than exercise with normal α2A-AR function. These results suggest that blockade of α2A-ARs may be exploited to reduce visceral fat and to improve insulin secretion.

Publisher

S. Karger AG

Subject

Cellular and Molecular Neuroscience,Endocrine and Autonomic Systems,Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3