Clinical Drug Response Prediction by Using a Lq Penalized Network-Constrained Logistic Regression Method

Author:

Huang Hai-Hui,Dai Jing-Guo,Liang Yong

Abstract

Background/Aims: One of the most important impacts of personalized medicine is the connection between patients’ genotypes and their drug responses. Despite a series of studies exploring this relationship, the predictive ability of such analyses still needs to be strengthened. Methods: Here we present the Lq penalized network-constrained logistic regression (Lq-NLR) method to meet this need, in which the predictors are integrated into the gene expression data and biological network knowledge and are combined with a more aggressive penalty function. Response prediction models for two cancer targeting drugs (erlotinib and sorafenib) were developed from gene expression data and IC50 values from a large panel of cancer cell lines by utilizing the proposed approach. Then the drug responders were tested with the baseline tumor gene expression data, yielding an in vivo drug sensitivity prediction. Results: These results demonstrated the high effectiveness of this approach. One of the best results achieved by our method was a correlation of 0.841 between the cell line in vitro drug response and patient’s in vivo drug response. We then applied these two drug prediction models to develop a personalized medicine approach in which the subsequent treatment depends on each patient’s gene-expression profile. Conclusion: The proposed method is much better than the existing approach and can capture a more accurate reflection of the relationship between genotypes and phenotypes.

Publisher

S. Karger AG

Subject

Physiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3