Abstract
<b><i>Introduction:</i></b> Although exercise can prevent cognitive decline due to aging, few elderly individuals are able to exercise for long. Therefore, an exercise method for older adults that is feasible for a long duration without overexertion is necessary. In this study, we focused on exercise by shaking. This study examined the possibility to prevent the decline in memory through regular and long-term shaking exercise using a senescence-accelerated mouse (SAM) model. Behavioral analysis was conducted, and histological changes in the mouse brain were examined to evaluate whether this stimulation method could become a novel exercise method. <b><i>Materials and Methods:</i></b> The shaking exercise was applied to SAMP10 mice for 30 min 3 times per week for 25 continuous weeks. Behavioral analysis included a step-through passive avoidance test, whereas the histological analysis involved immunohistochemical staining using the anti-glutamate receptor (α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors [AMPAR]) antibody in the hippocampus. The number and area of nerve cells in the hippocampal regions were measured and compared between groups. <b><i>Results:</i></b> Behavioral analysis revealed that the shaking group retained memory longer than the control group, and memory capacity decline was suppressed. Additionally, histological examination showed that the shaking group had a higher number of AMPAR receptor-positive neurons per area in the hippocampal CA1 and CA3 regions than the control group, suggesting that degeneration and shedding of neurons due to aging was suppressed. <b><i>Discussion/Conclusion:</i></b> We believe that shaking could become an exercise therapy that can reduce the decline in memory with aging and expect its human application in the future.
Subject
Psychiatry and Mental health,Cognitive Neuroscience,Geriatrics and Gerontology