Calcium Sensing Receptor Regulating Smooth Muscle Cells Proliferation Through Initiating Cystathionine-Gamma-Lyase/Hydrogen Sulfide Pathway in Diabetic Rat

Author:

Zhong Xin,Wang Yuwen,Wu Jichao,Sun Aili,Yang Fan,Zheng Dan,Li Ting,Dong Shiyun,Zhao Yajun,Yang Guangdong,Xu Changqing,Sun Dianjun,Lu Fanghao,Zhang Weihua

Abstract

Aims: Hydrogen sulfide (H2S) inhibits the proliferation of vascular smooth muscle cells (VSMCs). However, how cystathionine-gamma-lyase (CSE), a major enzyme that produces H2S, is regulated remains unknown. Whether calcium-sensing receptor (CaSR) inhibits the proliferation of VSMCs by regulating the endogenous CSE/H2S pathway in diabetic rat has not been previously investigated. Methods and Results: The morphological and ultrastructure alterations were tested by transmission electron microscopy, changes in the H2S concentration and the relaxation of the mesenteric secondary artery loop of diabetic rats were determined by Multiskan spectrum microplate spectrophotometer and isometric force transducer. Additionally, the expression levels of CaSR, CSE and Cyclin D1 in the mesenteric arteries of rats were examined by western blotting. The intracellular calcium concentration, the expression of p-CaMK II (phospho-calmodulin kinases II), CSE activity, the concentration of endogenous H2S and the proliferation of cultured VSMCs from rat thoracic aortas were measured by using confocal microscope, western blotting, microplate spectrophotometer, MTT and BrdU, respectively. The VSMC layer thickened, the H2S concentration dropped, the relaxation of the mesenteric secondary artery rings weakened, and the expression of CaSR and CSE decreased whereas the expression of Cyclin D1 increased in diabetic rats compared with the control group. The [Ca2+]i of VSMCs increased upon treatment with CaSR agonists (10 µM Calindol and 2.5 mM CaCl2), while it decreased upon administration of calhex231, U73122 and 2-APB. The expression of p-CaMK II and CSE increased upon treatment with CaSR agonists in VSMCs. CSE activity and the endogenous H2S concentration decreased in response to high glucose, while it increased with treatment of CaSR agonists. The proliferation rate increased in response to high glucose, and CaSR agonists or NaHS significantly reversed the proliferation of VSMCs caused by high glucose. Conclusions: Our results demonstrated that CaSR regulated the endogenous CSE/H2S pathway to inhibit the proliferation of VSMCs in both diabetic and high glucose models.

Publisher

S. Karger AG

Subject

Physiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3