Activated Phosphatidylinositol 3-Kinase/Akt Inhibits the Transition of Endothelial Progenitor Cells to Mesenchymal Cells by Regulating the Forkhead Box Subgroup O-3a Signaling

Author:

Zhang Zongqi,Zhang Tiantian,Zhou Yaoyao,Wei Xiaowei,Zhu Jianbing,Zhang Junfeng,Wang Changqian

Abstract

Background and Aims: Endothelial progenitor cells (EPCs) differentiate into mature endothelial cells and may thus be candidates for ischemic disease therapy; however, the transition of EPCs to mesenchymal cells is not fully understood. We explored the role of phosphatidylinositol 3-kinase (PI3K)/Akt signaling in endothelial-to-mesenchymal transition (EndMT) induced by transforming growth factor beta 1 (TGF-β1). Methods: Rat bone marrow-derived EPCs were isolated by using Ficoll-Isopaque Plus density-gradient centrifugation. EndMT was induced by TGF-β1 (5 ng/mL). PI3K/Akt signaling was activated by IGF-1 or Lenti-PIK3R2 shRNA. Additionally, FoxO3a expression was suppressed by a lentiviral vector (Lenti-FoxO3a shRNA). Smad3 and FoxO3a co-localization was detected by confocal immunofluorescence microscopy. The expressions of molecules involved in EndMT were exmined by using Western-blot analysis. Results: EndMT of EPCs was fully developed after TGF-β1 treatment (5 ng/mL) for 7 days. PIK3R2 expression in EPCs was driven by TGF-β1. Lenti-PIK3R2 shRNA blocked alpha-smooth muscle actin (α-SMA) expression in EPCs treated with TGF-β1, drove PI3K/Akt activation, and increased expression of phosphorylated FoxO3a instead of phosphorylated Smad3. The effect of Lenti-PIK3R2 shRNA was reduced by LY294002, a specific inhibitor of PI3K. IGF-1 attenuated α-SMA protein expression in EPCs treated with TGF-β1. Similar to Lenti-PIK3R2 shRNA, IGF-1 also inhibited and elevated the phosphorylation of Smad3 and FoxO3a, respectively. IGF-1 disrupted the co-localization of these proteins in EPCs treated with TGF-β1. Lenti-FoxO3a shRNA transfection of EPCs suppressed expression of FoxO3a as well as that of the mesenchymal markers SM22α and α-SMA. Conclusions: Activation of PI3K/Akt signaling by Lenti-PIK3R2 shRNA or by exogenous IGF-1 inhibits EndMT in EPCs via negative regulation of FoxO3a-dependent signaling.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3