Corticosteroid-Binding Globulin Deficiency Specifically Impairs Contextual and Recognition Memory Consolidation in Male Mice

Author:

de Medeiros Gabriela F.,Lafenêtre Pauline,Janthakhin Yoottana,Cerpa Juan-Carlos,Zhang Chun-Lei,Mehta Marishka M.,Mortessagne Pierre,Helbling Jean-Christophe,Ferreira Guillaume,Moisan Marie-PierreORCID

Abstract

Background/Aims: Glucocorticoids are essential in modulating memory processes of emotionally arousing experiences and we have shown that corticosteroid-binding globulin (CBG) influences glucocorticoid delivery to the brain. Here, we investigated the role of CBG in contextual and recognition long-term memory according to stress intensity. Method: We used adult male mice totally deficient in CBG (Cbg KO) or brain-specific Cbg KO (CbgCamk KO) to examine their performance in contextual fear conditioning (CFC) and au­ditory fear conditioning, both at short (1 h) and long-term (24 h). Long-term memory in Cbg KO was further analyzed in conditioned odor aversion and in novel object recognition task (NORT) with different paradigms, that is, with and without prior habituation to the context, with a mild or strong stressor applied during consolidation. In the NORT experiments, total and free glucocorticoid levels were measured during consolidation. Results: Impaired memory was observed in the Cbg KO but not in the CbgCamk KO in the CFC and the NORT without habituation when tested 24 h later. However, Cbg KO displayed normal behavior in the NORT with previous habituation and in the NORT with a mild stressor. In condition of the NORT with a strong stressor, Cbg KO retained good 24 h memory performance while controls were impaired. Total and free glucocorticoids levels were always higher in controls than in Cbg KO except in NORT with mild stressor where free glucocorticoids were equivalent to controls. Conclusions: These data indicate that circulating but not brain CBG influences contextual and recognition long-term memory in relation with glucocorticoid levels.

Publisher

S. Karger AG

Subject

Cellular and Molecular Neuroscience,Endocrine and Autonomic Systems,Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3