Adverse Maternal Environment Alters MicroRNA-10b-5p Expression and Its Epigenetic Profile Concurrently with Impaired Hippocampal Neurogenesis in Male Mouse Hippocampus

Author:

Ke Xingrao,Huang Yingliu,Fu Qi,Lane Robert H.,Majnik Amber

Abstract

An adverse maternal environment (AME) predisposes adult offspring toward cognitive impairment in humans and mice. However, the underlying mechanisms remain poorly understood. Epigenetic changes in response to environmental exposure may be critical drivers of this change. Epigenetic regulators, including microRNAs, have been shown to affect cognitive function by altering hippocampal neurogenesis which is regulated in part by brain-derived neurotropic factor (BDNF). We sought to investigate the effects of AME on miR profile and their epigenetic characteristics, as well as neurogenesis and BDNF expression in mouse hippocampus. Using our mouse model of AME which is composed of maternal Western diet and prenatal environmental stress, we found that AME significantly increased hippocampal miR-10b-5p levels. We also found that AME significantly decreased DNA methylation and increased accumulations of active histone marks H3 lysine (K) 4me3, H3K14ac, and ­H3K36me3 at miR-10b promoter. Furthermore, AME significantly decreased hippocampal neurogenesis by decreasing cell numbers of Ki67<sup>+</sup> (proliferation marker), NeuroD1<sup>+</sup> (neuronal differentiation marker), and NeuN<sup>+</sup> (mature neuronal marker) in the dentate gyrus (DG) region concurrently with decreased hippocampal BDNF protein levels. We speculate that the changes in epigenetic profile at miR-10b promoter may contribute to upregulation of miR-10b-5p and subsequently lead to decreased BDNF levels in a model of impaired offspring hippocampal neurogenesis and cognition in mice.

Publisher

S. Karger AG

Subject

Developmental Neuroscience,Neurology

Reference65 articles.

1. Alastalo H, von Bonsdorff MB, Räikkönen K, Pesonen AK, Osmond C, Barker DJ, et al. Early life stress and physical and psychosocial functioning in late adulthood. PLoS One. 2013;8(7):e69011.

2. Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia. 1993;36(1):62–7.

3. Cordner ZA, Khambadkone SG, Boersma GJ, Song L, Summers TN, Moran TH, et al. Maternal high-fat diet results in cognitive impairment and hippocampal gene expression changes in rat offspring. Exp Neurol. 2019;318:92–100.

4. Arcego DM, Krolow R, Lampert C, Toniazzo AP, Berlitz C, Lazzaretti C, et al. Early life adversities or high fat diet intake reduce cognitive function and alter BDNF signaling in adult rats: Interplay of these factors changes these effects. Int J Dev Neurosci. 2016;50:16–25.

5. Tozuka Y, Kumon M, Wada E, Onodera M, Mochizuki H, Wada K. Maternal obesity impairs hippocampal BDNF production and spatial learning performance in young mouse offspring. Neurochem Int. 2010;57(3):235–47.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3