Abstract
The medial collateral ligament of the knee joint is one of the most commonly injured ligaments of the knee. Recent data have shown that the thin layer of connective tissue covering the ligament, known as the epiligament, is essential for its nutrition and normal function, as well as its healing after injury. The aim of the present study was to investigate and compare the changes in the epiligament of the medial collateral ligament which occurred during operative and non-operative treatment throughout the first month after injury. We used 27 male Wistar rats randomly allocated to three groups. In the 9 rats belonging to the first group, the medial collateral ligament was fully transected and left to heal spontaneously without suture. In the 9 rats belonging to the second group, the transected ends were marked with a 9–0 nylon monofilament suture. The 9 rats in the third group were used as normal controls. Three animals from each group were sacrificed on days 8, 16, and 30 after injury. Light microscopic analysis was performed on semi-thin sections stained with 1% methylene blue, azure II, and basic fuchsin. Transmission electron microscopy was used to study and compare the ultrastructural changes in the epiligament. The statistical analysis of the obtained data was performed using the Kruskal-Wallis H test and Mood’s median test. The normal structure of the epiligament of the medial collateral ligament was presented by fibroblasts, fibrocytes, adipose cells, mast cells, collagen fibers, and neuro-vascular bundles. On days 8 and 16 postinjury, the epiligament appeared hypercellular and returned to its normal appearance on the thirtieth day postinjury. The electron microscopic study revealed the presence of different types of fibroblasts with the typical ultrastructural features of collagen-synthetizing cells. The comparative statistical analysis on the respective day showed that there was no statistically significant difference in the number of cells between spontaneously healing animals and animals recovering with suture application. These data further prove that spontaneous healing of the medial collateral ligament yields similar results to surgical treatment and may be used as a basis for the development of treatment regimens with improved patient outcome.