Circulating Long Noncoding RNA HOTAIR is an Essential Mediator of Acute Myocardial Infarction

Author:

Gao Lu,Liu Yuan,Guo Sen,Yao Rui,Wu Leiming,Xiao Lili,Wang Zheng,Liu Yuzhou,Zhang Yanzhou

Abstract

Background/Aims: Acute myocardial infarction (AMI) is one of the leading causes of death in the world. However, specific diagnostic biomarkers have not been fully determined, and candidate regulatory targets for AMI have not been identified to date. Long noncoding RNAs (lncRNAs) are a class of RNA molecules that have diverse regulatory functions during embryonic development, normal life, and disease in higher organisms. However, research on the role of lncRNAs in cardiovascular diseases, particularly AMI, is still in its infancy. HOX antisense intergenic RNA (HOTAIR), a 2.2 kb lncRNA, was initially described as a modulator of HOX gene expression. Recent studies have illustrated the important role of HOTAIR in cancer progression, but few studies have reported its function in cardiac disease, including AMI. In the current study, we aimed to detect the expression of HOTAIR during AMI and to explore its function in hypoxia-induced cardiomyocyte injury in neonatal cardiomyocytes. Methods: In 50 consecutively enrolled AMI patients, we examined the serum expression levels of HOTAIR and analysed its correlation with cardiac troponin I (cTnI) expression. Another 50 age- and sex-matched subjects served as healthy controls. Next, the HOTAIR expression was detected in the serum from C57BL/6J mice subjected to coronary artery ligation and in neonatal rat cardiomyocytes induced by hypoxia. Cultured cardiomyocytes apoptosis were measured by terminal deoxynucleotide transferase dUTP nick end labelling (TUNEL) staining. A search for miRNAs that had complementary base paring with HOTAIR was performed utilizing an online software program, and the interaction between miR-1 and HOTAIR was examined using a luciferase reporter assay. Results: Our study revealed that HOTAIR expression was significantly decreased in the serum of AMI patients compared with that of the healthy controls. Similarly, we observed that HOTAIR was downregulated in the serum of mice subjected to coronary artery ligation and in cultured cardiomyocytes exposed to hypoxia. Furthermore, we observed that the adenovirus vector-driven overexpression of HOTAIR dramatically limited hypoxia-induced myocyte apoptosis, whereas knockdown HOTAIR by AdshHOTAIR (adenoviral short hairpin HOTAIR) exhibited the opposite phenotype. Mechanistically, we discovered that the cardioprotective function of HOTAIR is partly based on the negative regulation of miR-1. Conclusions: Taken together, the results of our study suggest that HOTAIR is a protective factor for cardiomyocytes and that the plasma concentration of HOTAIR may serve as a biomarker for human AMI diagnosis.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3