Transcription Factor E2F8 Activates PDK1-Mediated DNA Damage Repair to Enhance Cisplatin Resistance in Lung Adenocarcinoma

Author:

Li Hongliang,Sun Junxia,Hu Haibo,Wang Yi

Abstract

<b><i>Introduction:</i></b> Cisplatin (DDP) is the commonest chemo drug in lung adenocarcinoma (LUAD) treatment, and DDP resistance is a significant barrier to therapeutic therapy. This study attempted to elucidate the impact of PDK1 on DDP resistance in LUAD and its mechanism. <b><i>Methods:</i></b> Bioinformatics analysis was used to determine the expression and enriched pathways of PDK1 in LUAD tissue. Subsequently, E2F8, the upstream transcription factor of PDK1, was predicted, and the binding relationship between the two was analyzed using dual-luciferase and ChIP experiments. PDK1 and E2F8 levels in LUAD tissues and cells were detected via qRT-PCR. Cell viability, proliferation, and apoptosis levels were assayed by CCK-8, EdU, and flow cytometry experiments, respectively. Comet assay was used to assess DNA damage, and immunofluorescence was used to assess the expression of γ-H2AX. NHEJ reporter assay was to assess DNA repair efficiency. Western blot tested levels of DNA damage repair (DDR)-related proteins. Immunohistochemistry assessed the expression of relevant genes. Finally, an animal model was constructed to investigate the influence of PDK1 expression on LUAD growth. <b><i>Results:</i></b> PDK1 was found to be upregulated in LUAD and enhanced DDP resistance by mediating DDR. E2F8 was identified as an upstream transcription factor of PDK1 and was highly expressed in LUAD. Rescue experiments presented that knocking down E2F8 could weaken the promotion of PDK1 overexpression on DDR-mediated DDP resistance in LUAD. In vivo experiments showed that knocking down PDK1 plus DDP significantly reduced the growth of xenograft tumors. <b><i>Conclusion:</i></b> Our results indicated that the E2F8/PDK1 axis mediated DDR to promote DDP resistance in LUAD. Our findings lead to an improved treatment strategy after drug resistance.

Publisher

S. Karger AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3