Abstract
Monocular visual field defects generally localize at or anterior to the optic chiasm, while homonymous hemianopias localize to the retrochiasmal visual pathway. Highly incongruous visual field defects may be difficult to identify on 24-2 Humphrey visual field testing, and this case demonstrates the value of optical coherence tomography (OCT) ganglion cell-inner plexiform layer (GCIPL) in rapidly localizing the lesion. A 54-year-old woman was found on routine examination to have an isolated superonasal quadrant visual field defect respecting the vertical meridian in the left eye only on Humphrey 24-2 SITA-Fast testing. She had a remote history of significant head trauma. Visual acuity, anterior segment, and fundus examination were normal. OCT revealed a bow-tie atrophy of the retinal nerve fiber layer in the right eye (OD), and binocular homonymous hemi-macular atrophy of OCT GCIPL, confirming the localization was the left retrochiasmal visual pathway. A repeat Humphrey 30-2 SITA-Fast visual field demonstrated that the visual field defect was also present in the OD in a highly incongruous manner. Magnetic resonance imaging of the brain with contrast showed mild atrophy of the left optic tract. This case demonstrates that highly incongruous visual field defects may be difficult to identify on Humphrey 24-2 SITA-Fast visual fields, and OCT GCIPL serves as a rapid way to localize the lesion. More detailed visual field testing including 30-2 programs should be considered in these cases.