Machine Learning for the Prediction of Survival Post-Allogeneic Hematopoietic Cell Transplantation: A Single-Center Experience

Author:

Shourabizadeh Hamed,Aleman Dionne M.,Rousseau Louis-Martin,Law Arjun D.,Viswabandya Auro,Michelis Fotios V.

Abstract

Introduction: Prediction of outcomes following allogeneic hematopoietic cell transplantation (HCT) remains a major challenge. Machine learning (ML) is a computational procedure that may facilitate the generation of HCT prediction models. We sought to investigate the prognostic potential of multiple ML algorithms when applied to a large single-center allogeneic HCT database. Methods: Our registry included 2,697 patients that underwent allogeneic HCT from January 1976 to December 2017. 45 pretransplant baseline variables were included in the predictive assessment of each ML algorithm on overall survival (OS) as determined by area under the curve (AUC). Pretransplant variables used in the EBMT ML study (Shouval et al., 2015) were used as a benchmark for comparison. Results: On the entire dataset, the random forest (RF) algorithm performed best (AUC 0.71 ± 0.04) compared to the second-best model, logistic regression (LR) (AUC = 0.69 ± 0.04) (p < 0.001). Both algorithms demonstrated improved AUC scores using all 45 variables compared to the limited variables examined by the EBMT study. Survival at 100 days post-HCT using RF on the full dataset discriminated patients into different prognostic groups with different 2-year OS (p < 0.0001). We then examined the ML methods that allow for significant individual variable identification, including LR and RF, and identified matched related donors (HR = 0.49, p < 0.0001), increasing TBI dose (HR = 1.60, p = 0.006), increasing recipient age (HR = 1.92, p < 0.0001), higher baseline Hb (HR = 0.59, p = 0.0002), and increased baseline FEV1 (HR = 0.73, p = 0.02), among others. Conclusion: The application of multiple ML techniques on single-center allogeneic HCT databases warrants further investigation and may provide a useful tool to identify variables with prognostic potential.

Publisher

S. Karger AG

Subject

Hematology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3