Author:
Gu Juan,Wang Yueping,Wang Xuedong,Zhou Daoping,Wang Xinguo,Zhou Ming,He Zhimin
Abstract
Background/Aims: An increasing body of evidence shows that long noncoding RNAs (lncRNAs) are involved in many different cancers. In this study, we aimed to investigate the competing endogenous RNA (ceRNA)-dependent mechanism by which the lncRNA GAS5 contributes to the development of breast cancer. Methods: A total of 68 breast cancer patients were enrolled, and breast cancer and adjacent normal tissues were collected. The human breast cancer cell lines MDA-MB-231, MDA-MB-453, BT549, SK-BR-3 and MCF-7 and human breast cell line MCF10A were utilized in this study. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blotting were performed to detect expression of relative factors. RNA immunoprecipitation (RIP) was used to evaluate the relationship between GAS5 and miR-23a, and a dual luciferase reporter gene assay was employed to assess the relationship between ATG3 and miR-23a. A subcutaneous xenograft nude mouse model was generated to examine the role of GAS5 and its regulatory pathway in autophagy. Results: GAS5 levels were frequently decreased in breast cancer tissues and cell lines, and its relatively low expression was closely related to a larger tumour size, advanced tumour-node-metastasis (TNM) stage and estrogen receptor-negative (ER-) breast cancer tissues. More importantly, we found that GAS5 promoted autophagy, with enhanced autophagosome formation after GAS5 overexpression. GAS5 was found to act as a microRNA sponge in a pathway that included miR-23a and its target gene ATG3. The GAS5-miR-23a-ATG3 axis significantly regulated autophagy in vivo and in vitro. Conclusions: In summary, we report that the GAS5-miR-23a-ATG3 axis can be regarded as a key regulator of autophagy pathways in breast cancer; it may constitute a promising biomarker and therapeutic target in the future.
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献