Interstitial Cells in the Pineal Gland of Pregnant and Nonpregnant Viscachas (Lagostomus maximus maximus): A Morphometric and Biochemical Study

Author:

Busolini Fabricio Ivan,Gallol Luis Ezequiel,Rodríguez Graciela Beatríz,Filippa Verónica Palmira,Mohamed Fabian Heber

Abstract

The pineal gland of mammals undergoes morphological and biochemical changes throughout the gestation period. In viscachas, a seasonal breeding rodent, pregnancy lasts approximately 154 days and 3 stages can be defined, i.e., early, mid, and late pregnancy. The purpose of this study is to analyze morphometric variations in the expression of S-100 protein, glial fibrillary acidic protein (GFAP), and vimentin in the interstitial cells (IC) in pregnant and nonpregnant viscachas by immunohistochemistry (IHC). We also aim to evaluate a probable relation between glandular activity and pregnancy. The immunopositive percentage area (%IA) for the studied proteins and the number of immunoreactive cells against the S-100 protein with a visible nucleus (nº IC-S-100) were analyzed. Estradiol and progesterone serum levels were also determined by RIA. Variations in the expression of the S-100 protein and GFAP, as well as changes in the nº IC-S-100 related to serum hormone levels, were found between pregnant and nonpregnant viscachas. Viscachas in mid pregnancy exhibited the highest values of %IA for the analyzed proteins, followed by females in late and early pregnancy, while the nonpregnant ones showed the lowest values for all of the groups studied. Likewise, the nº IC-S-100 also varied following the same pattern. Thus, these variations seem to indicate a direct relationship between glandular activity and gonadal hormone levels. On these grounds, we may conclude that IC undergo changes in relation to ovarian hormone levels and participate in the regulation of glandular activity during pregnancy. However, further research is necessary to elucidate this relationship.

Publisher

S. Karger AG

Subject

Histology,Anatomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3