Pituitary Adenylate Cyclase Activating Polypeptide Elicits Neuroprotection Against Acute Ischemic Neuronal Cell Death Associated with NMDA Receptors

Author:

Kaneko Yuji,Tuazon Julian P.,Ji Xunming,Borlongan Cesario V.

Abstract

Background/Aims: The endogenous neurotrophic peptides pituitary adenylate cyclase-activating polypeptides (PACAP-27/38) protect against stroke, but the molecular mechanism remains unknown. Methods: Primary rat neural cells were exposed to PACAP-27 or PACAP-38 before induction of experimental acute ischemic stroke via oxygen-glucose deprivation-reperfusion (OGD/R) injury. To reveal PACAP’s role in neuroprotection, we employed fluorescent live/dead cell viability and caspase 3 assays, optical densitometry of mitochondrial dehydrogenase and cell growth, glutathione disulfide luciferase activity, ELISA for high mobility group box1 extracellular concentration, ATP bioluminescence, Western blot analysis of PACAP, NMDA subunits, apoptosis regulator Bcl-2, social interaction hormone oxytocin, and trophic factor BDNF, and immunocytochemical analysis of PACAP. Results: Both PACAP-27 and PACAP-38 (PACAP-27/38) increased cell viability, decreased oxidative stress-induced cell damage, maintained mitochondrial activity, prevented the release of high mobility group box1, and reduced cytochrome c/caspase 3-induced apoptosis. PACAP-27/38 increased the protein expression levels of BDNF, Bcl-2, oxytocin, and precursor PACAP. N-methyl-D-aspartate receptor (NMDAR)-induced excitotoxicity contributes to the cell death associated with stroke. PACAP-27/38 modulated the protein expression levels of NMDAR subunits. PACAP-27/38 increased the protein expression levels of the GluN1 subunit, and decreased that of the GluN2B and GluN2D subunits. PACAP-27, but not PACAP-38, increased the expression level of the GluN2C subunit. Conclusion: This study provides evidence that PACAP regulated NMDAR subunits, affording neuroprotection after OGD/R injury.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3