Delayed Bone Age in a Child with a Novel Loss-of-Function Variant in <i>SETBP1</i> Gene Sheds Light on the Potential Role of SETBP1 Protein in Skeletal Development

Author:

Miolo Gianmaria,Colavito Davide,Della Puppa Lara,Corona Giuseppe

Abstract

<b><i>Introduction:</i></b> <i>SETBP1</i> gene variants that decrease or eliminate protein activity have been associated with phenotypes characterized by speech apraxia and intellectual disabilities. This condition, distinctly separated from Schinzel-Giedion syndrome, is referred to as autosomal dominant mental retardation 29 (ADR29). <b><i>Case Presentation:</i></b> In this report, we present the case of a 6-year-old male patient exhibiting fine and global motor skill impairments along with expressive language delay. The patient carried a novel germline, heterozygous, de novo nonsense variant in the <i>SETBP1</i> gene, specifically the c.532C&gt;T variant, which prematurely terminates protein translation at amino acid 178, p.(Gln178*), and removes more than 10% of the reference protein isoform consisting of 1,596 amino acids. According to the American College of Medical Genetics and Genomics (ACMG) guidelines, this variant has been classified as pathogenic. <b><i>Conclusion:</i></b> Given the limited number of ADR29 cases reported to date, it is critical to focus attention on the phenotypic features of each new individual and seek out previously undocumented defects. The clinical findings found in our patient align with current knowledge on the correlation between the genotypes characterized by loss-of-function variants in <i>SETBP1</i> gene and a particular neurological phenotype. Furthermore, the presence of a severely delayed bone age in this patient, which we report for the first time, could indicate a possible indirect but significant contribution of the SETBP1 protein in bone development and maturation processes. This finding highlights the need for further investigation into the potential effects of <i>SETBP1</i> gene variants on bone health and the possible involvement of the SETBP1 protein in skeletal growth and development.

Publisher

S. Karger AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3