Deep Learning Algorithms for Corneal Amyloid Deposition Quantitation in Familial Amyloidosis

Author:

Kessel KlausORCID,Mattila Jaakko,Linder Nina,Kivelä TeroORCID,Lundin Johan

Abstract

Objectives: The aim of this study was to train and validate deep learning algorithms to quantitate relative amyloid deposition (RAD; mean amyloid deposited area per stromal area) in corneal sections from patients with familial amyloidosis, Finnish (FAF), and assess its relationship with visual acuity. Methods: Corneal specimens were obtained from 42 patients undergoing penetrating keratoplasty, stained with Congo red, and digitally scanned. Areas of amyloid deposits and areas of stromal tissue were labeled on a pixel level for training and validation. The algorithms were used to quantify RAD in each cornea, and the association of RAD with visual acuity was assessed. Results: In the validation of the amyloid area classification, sensitivity was 86%, specificity 92%, and F-score 81. For corneal stromal area classification, sensitivity was 74%, specificity 82%, and F-score 73. There was insufficient evidence to demonstrate correlation (Spearman’s rank correlation, –0.264, p = 0.091) between RAD and visual acuity (logMAR). Conclusions: Deep learning algorithms can achieve a high sensitivity and specificity in pixel-level classification of amyloid and corneal stromal area. Further modeling and development of algorithms to assess earlier stages of deposition from clinical images is necessary to better assess the correlation between amyloid deposition and visual acuity. The method might be applied to corneal dystrophies as well.

Publisher

S. Karger AG

Subject

General Nursing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3