Machine Learning Prediction of Radiofrequency Thermal Ablation Efficacy: A New Option to Optimize Thyroid Nodule Selection

Author:

Negro RobertoORCID,Rucco Matteo,Creanza Annalisa,Mormile Alberto,Limone Paolo Piero,Garberoglio Roberto,Spiezia Stefano,Monti Salvatore,Cugini Christian,El Dalati Ghassan,Deandrea Maurilio

Abstract

Background: Radiofrequency (RF) is a therapeutic modality for reducing the volume of large benign thyroid nodules. If thermal therapies are interpreted as an alternative strategy to surgery, critical issues in their use are represented by the extent of nodule reduction and by the durability of nodule reduction over a long period of time. Objective: To assess the ability of machine learning to discriminate nodules with volume reduction rate (VRR) < or ≥50% at 12 months following RF treatment. Methods: A machine learning model was trained with a dataset of 402 cytologically benign thyroid nodules subjected to RF at six Italian Institutions. The model was trained with the following variables: baseline nodule volume, echostructure, macrocalcalcifications, vascularity, and 12-month VRR. Results: After training, the model could distinguish between nodules having VRR <50% from those having VRR ≥50% in 85% of cases (accuracy: 0.85; 95% confidence interval [CI]: 0.80–0.90; sensitivity: 0.70; 95% CI: 0.62–0.75; specificity: 0.99; 95% CI: 0.98–1.0; positive predictive value: 0.95; 95% CI: 0.92–0.98; negative predictive value: 0.95; 95% CI: 0.92–0.98). Conclusions: This study demonstrates that a machine learning model can reliably identify those nodules that will have VRR < or ≥50% at 12 months after one RF treatment session. Predicting which nodules will be poor or good responders represents valuable data that may help physicians and patients decide on the best treatment option between thermal ablation and surgery or in predicting if more than one session might be necessary to obtain a significant volume reduction.

Publisher

Bioscientifica

Subject

Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3