Multidisciplinary Perspectives on Automatic Analysis of Children’s Language Samples: Where Do We Go from Here?

Author:

Lüdtke Ulrike,Bornman JuanORCID,de Wet FebeORCID,Heid UlrichORCID,Ostermann JörnORCID,Rumberg Lars,van der Linde JeannieORCID,Ehlert Hanna

Abstract

<b><i>Background:</i></b> Language sample analysis (LSA) is invaluable to describe and understand child language use and development for clinical purposes and research. Digital tools supporting LSA are available, but many of the LSA steps have not been automated. Nevertheless, programs that include automatic speech recognition (ASR), the first step of LSA, have already reached mainstream applicability. <b><i>Summary:</i></b> To better understand the complexity, challenges, and future needs of automatic LSA from a technological perspective, including the tasks of transcribing, annotating, and analysing natural child language samples, this article takes on a multidisciplinary view. Requirements of a fully automated LSA process are characterized, features of existing LSA software tools compared, and prior work from the disciplines of information science and computational linguistics reviewed. <b><i>Key Messages:</i></b> Existing tools vary in their extent of automation provided across the process of LSA. Advances in machine learning for speech recognition and processing have potential to facilitate LSA, but the specifics of child speech and language as well as the lack of child data complicate software design. A transdisciplinary approach is recommended as feasible to support future software development for LSA.

Publisher

S. Karger AG

Subject

LPN and LVN,Speech and Hearing,Linguistics and Language,Language and Linguistics

Reference21 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3