Protodioscin Induces Apoptosis Through ROS-Mediated Endoplasmic Reticulum Stress via the JNK/p38 Activation Pathways in Human Cervical Cancer Cells

Author:

Lin Chia-Liang,Lee Chien-Hsing,Chen Chien-Min,Cheng Chun-Wen,Chen Pei-Ni,Ying Tsung-Ho,Hsieh Yi-Hsien

Abstract

Background/Aims: Protodioscin (PD) is a steroidal saponin with anti-cancer effects on a number of cancer cells, but the anti-tumor effects and mechanism of action of PD on human cervical cancer cells is unclear. Methods: We determined cell viability using the MTT assay. Cell death, mitochondrial membrane potential (MMP), intracellular reactive oxygen species (ROS) generation, and endoplasmic reticulum (ER) stress were measured on a flow cytometry. Caspase activation, ER stress, and MMP-dependent apoptosis proteins in cervical cancer cells in response to PD were determined by Western blot analysis. The ability of ATF4 binding to ChIP promoter was measured using the ChIP assay. Results: We demonstrated that PD inhibits cell viability, causes a loss of mitochondrial function, and induces apoptosis, as evidenced by up-regulation of caspase-8, -3, -9, -PARP, and Bax activation, and down-regulation of Bcl-2 expression. PD was shown to induce ROS and the ER stress pathway, including GRP78, p-eIF-2α, ATF4, and CHOP. Pre-treatment with NAC, a ROS production inhibitor, significantly reduced ER stress and apoptosis-related proteins induced by PD. Transfection of GRP78/CHOP-siRNA effectively inhibited PD-induced ER stress-dependent apoptosis. Moreover, treatment with PD significantly increased p38 and JNK activation. Co-administration of a JNK inhibitor (SP600125) or p38 inhibitor (SB203580) abolished cell death and ER stress effects during PD treatment. In addition, PD induced the expression of nuclear ATF4 and CHOP, as well as the binding ability of ATF4 to the CHOP promoter. Conclusion: Our results suggest that PD is a promising therapeutic agent for the treatment of human cervical cancer.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3