A Novel Feature Selection Method for High-Dimensional Biomedical Data Based on an Improved Binary Clonal Flower Pollination Algorithm
Author:
Publisher
S. Karger AG
Subject
Genetics (clinical),Genetics
Reference15 articles.
1. Lee K, Man Z, Wang D, Cao Z. Classification of microarray datasets using finite impulse response extreme learning machine for cancer diagnosis. Neural Comput Appl. 2013;22(3-4):457–68.
2. Liu H, Zhao Z. Manipulating data and dimension reduction methods: Feature selection. Encyclopedia of complexity and systems science. Berlin: Springer; 2009. pp. 5348–59.
3. Hira ZM, Gillies DF. A review of feature selection and feature extraction methods applied on microarray data. Adv Bioinforma. 2015;2015:198363.
4. Baldi P, Long AD. A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes. Bioinformatics. 2001 Jun;17(6):509–19.
5. Verbiest N, Derrac J, Cornelis C, García S, Herrera F. Evolutionary wrapper approaches for training set selection as preprocessing mechanism for support vector machines: experimental evaluation and support vector analysis. Appl Soft Comput. 2016;38(C):10–22.
Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Population characteristic exploitation-based multi-orientation multi-objective gene selection for microarray data classification;Computers in Biology and Medicine;2024-03
2. An evolutionary multiobjective method based on dominance and decomposition for feature selection in classification;Science China Information Sciences;2024-01-26
3. Classifying collisions in road accidents using XGBOOST, CATBOOST and SALP SWARM based optimization algorithms;Multimedia Tools and Applications;2023-10-05
4. An Efficient Binary Sand Cat Swarm Optimization for Feature Selection in High-Dimensional Biomedical Data;Bioengineering;2023-09-25
5. MiRNA subset selection for microarray data classification using grey wolf optimizer and evolutionary population dynamics;Neural Computing and Applications;2023-06-23
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3