ZNF23 Suppresses Cutaneous Melanoma Cell Malignancy via Mitochondria-Dependent Pathway

Author:

Zhang Xin,Ding Changrui,Tian Hongfang,Dong Xinjun,Meng Xianfu,Zhu Wenwei,Liu Bing,Wang Lan,Huang Min,Li Chengxin

Abstract

Background/Aims: Cutaneous melanoma is one of the leading causes of cancer deaths with an increasing incidence worldwide. A KRAB-containing zinc finger protein member, zinc finger 23 (ZNF23), was reduced in some types of tumors and inhibited cell growth by inducing cell cycle arrest. However, the role of ZNF23 expression is still poorly understood in melanoma. Methods: The level of ZNF23 expression was detected in cutaneous melanoma, adjacent normal skin tissues and cutaneous melanoma cell lines using immunohistochemistry and western blotting. The correlations between ZNF23 expression and other clinicopathologic parameters were analyzed in melanoma patients. Ectopic expression of ZNF23 plasmid was transfected into melanoma cells, SK-MEL-1 and SK-MEL-28. MTT, flow cytometry and transwell assay were used to measure cell proliferation, apoptosis, invasion and migration abilities, respectively. Mitochondrial functions and structures were detected by mitochondrial membrane potential assay and Transmission electron microscopy (TEM) method in melanoma cells transfected with overexpressing ZNF23 plasmid or empty vector. Western blotting was performed to detect the levels of ZNF23, p53, p27, Bcl-2 and cleaved caspase-3 after overexpressing of ZNF23 in melanoma cells. Results: ZNF23 was elevated in adjacent normal skin tissues compared with melanoma tissues. Patients with low level of ZNF23 expression exhibited higher incidence of lymphoid metastasis, thicker size of tumors and worse outcome. By using Cox’s regression analysis, ZNF23 expression, tumor thickness and lymph node metastasis were the independent prognostic factors for overall survival (p < 0.05). Results from cellular experiments indicated that ectopic expression of ZNF23 induced cell apoptosis by activation of caspase-3, p27, p53 expression and down-regulation of Bcl-2 through mitochondria-dependent pathway. Conclusions: Decreased ZNF23 was contributed to melanoma progression and poor survival with mitochondria-dependent pathway. It indicated that ZNF23 could be a promising therapeutic biomarker candidate for cutaneous melanoma.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3