Comparison of Breast Fine-Needle Aspiration Cytology and Tissue Sampling for High-Throughput Proteomic Analysis and Cancer Biomarker Detection

Author:

Park Hye Eun,Han Dohyun,Lee Jae Seok,Nikas Ilias P.,Kim Hyeyoon,Yang Sohyeon,Lee Hyebin,Ryu Han Suk

Abstract

Introduction: Fine-needle aspiration cytology (FNAC) specimens are widely utilized for the diagnosis and molecular testing of various cancers. We performed a comparative proteomic analysis of three different sample types, including breast FNAC, core needle biopsy (CNB), and surgical resection tissues. Our goal was to evaluate the suitability of FNAC for in-depth proteomic analysis and for identifying potential therapeutic biomarkers in breast cancer. Methods: High-throughput proteomic analysis was conducted on matched FNAC, CNB, and surgical resection tissue samples obtained from breast cancer patients. The protein identification, including currently established or promising therapeutic targets, was compared among the three different sample types. Gene Ontology (GO) enrichment analysis was also performed on all matched samples. Results: Compared to tissue samples, FNAC testing revealed a comparable number of proteins (7,179 in FNAC; 7,196 in CNB; and 7,190 in resection samples). Around 85% of proteins were mutually identified in all sample types. FNAC, along with CNB, showed a positive correlation between the number of enrolled tumor cells and identified proteins. In the GO analysis, the FNAC samples demonstrated a higher number of genes for each pathway and GO terms than tissue samples. CCND1, CDK6, HER2, and IGF1R were found in higher quantities in the FNAC compared to tissue samples, while TUBB2A was only detected in the former. Conclusion: FNAC is suitable for high-throughput proteomic analysis, in addition to an emerging source that could be used to identify and quantify novel cancer biomarkers.

Publisher

S. Karger AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Erratum;Pathobiology;2024-07-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3