Impact of Human Papillomavirus on Wnt/Beta-Catenin Signaling in Morphological Inconspicuous Cervicovaginal Cells

Author:

Donmez Hanife Guler,Akgor Utku,Onder Sevgen,Tanacan Atakan,Kuru Oguzhan,Ozgul Nejat,Usubutun Alp,Hufbauer MartinORCID,Akgül Baki,Beksac Mehmet Sinan

Abstract

<b><i>Introduction:</i></b> The aim of this study was to identify early changes in the Wnt/beta-catenin signaling pathway in high-risk human papillomavirus (HPV) infected cervicovaginal cells and to correlate these changes with cell proliferation, apoptosis, and autophagic processes. <b><i>Methods:</i></b> We evaluated 91 cervicovaginal smears of women with (<i>n</i> = 41) and without (<i>n</i> = 50) HPV-DNA. Smears were stained against beta-catenin, c-myc, secreted frizzled-related protein 4 (sFRP4), cleaved caspase-3, and the autophagy markers Beclin-1 and light chain 3B. In addition, sFRP-1, -2, -3, -4, -5 mRNA levels were determined by quantitative reverse transcription-PCR in primary keratinocytes and FaDu cells expressing HPV16-E6, -E7, or -E6E7. <b><i>Results:</i></b> Our data indicated that the Wnt/beta-catenin signaling is activated in HPV (+) cervicovaginal cells that can already be detected in cells with no obvious changes in cellular morphology (HPV [+]/cyto [−]). These cells also had significantly higher sFRP4 levels when compared to HPV-negative samples. In primary keratinocytes, sFRP4 was found to be absent and sFRP1 and sFRP2 to be repressed in the presence of HPV16-E6 and E7. Interestingly, sFRP4 is expressed in FaDu cells and can be upregulated in the presence of E6E7. Curiously, SFRP4 expression correlated with an increase in the level of autophagic markers in HPV (+)/cyto (−) smears. <b><i>Conclusion:</i></b> In conclusion, the activation of the Wnt/beta-catenin signaling pathway and upregulation of sFRP4, paralleled by an activation of the autophagic pathway may represent predisposing cellular factors early after HPV infection which need to be further determined in larger study.

Publisher

S. Karger AG

Subject

General Medicine,Histology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3