The Effect of Light Spectrum on the Morphology and Cannabinoid Content of Cannabis sativa L.

Author:

Magagnini Gianmaria,Grassi Gianpaolo,Kotiranta Stiina

Abstract

Cannabis sativa L. flowers are the main source of Δ-9-tetrahydrocannabinol (THC) used in medicine. One of the most important growth factors in cannabis cultivation is light; light quality, light intensity, and photoperiod play a big role in a successful growth protocol. The aim of the present study was to examine the effect of 3 different light sources on morphology and cannabinoid production. Cannabis clones were grown under 3 different light spectra, namely high-pressure sodium (HPS), AP673L (LED), and NS1 (LED). Light intensity was set to ∼450 µmol/m2/s measured from the canopy top. The photoperiod was 18L: 6D/21 days during the vegetative phase and 12L: 12D/46 days during the generative phase, respectively. At the end of the experiment, plant dry weight partition, plant height, and cannabinoid content (THC, cannabidiol [CBD], tetrahydrocannabivarin [THCV], cannabigerol [CBG]) were measured under different light treatments. The experiment was repeated twice. The 3 light treatments (HPS, NS1, AP673L) resulted in differences in cannabis plant morphology and in cannabinoid content, but not in total yield of cannabinoids. Plants under HPS treatment were taller and had more flower dry weight than those under treatments AP673L and NS1. Treatment NS1 had the highest CBG content. Treatments NS1 and AP673L had higher CBD and THC concentrations than the HPS treatment. Results were similar between experiments 1 and 2. Our results show that the plant morphology can be manipulated with the light spectrum. Furthermore, it is possible to affect the accumulation of different cannabinoids to increase the potential of medicinal grade cannabis. In conclusion, an optimized light spectrum improves the value and quality of cannabis. Current LED technology showed significant differences in growth habit and cannabinoid profile compared to the traditional HPS light source. Finally, no difference of flowering time was observed under different R:FR (i.e., the ratio between red and far-red light).

Publisher

S. Karger AG

Subject

Pulmonary and Respiratory Medicine,Pediatrics, Perinatology, and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3