Ceritinib Enhances the Efficacy of Substrate Chemotherapeutic Agent in Human ABCB1-Overexpressing Leukemia Cells In Vitro, In Vivo and Ex-Vivo

Author:

Yang Li,Li Manjun,Wang Fang,Zhen Chen,Luo Min,Fang Xiaona,Zhang Hong,Zhang Jianye,Li Qingshan,Fu Liwu

Abstract

Background/Aims: Multidrug resistance (MDR) triggered by ATP binding cassette (ABC) transporters, such as ABCB1, ABCC1, and ABCG2, is a key obstacle for successful cancer chemotherapy. There is currently no FDA-approved MDR modulator that can be used in clinic. Ceritinib, a selective ALK inhibitor, has been approved as the second-line treatment for ALK-positive non-small cell lung cancer. Here, we examined the role of ceritinib in leukemia associated MDR in therapy. Methods: The cell proliferation was detected by MTT assay. The flow cytometry was used to detect the expression of cell surface protein and to detect the accumulation and efflux of rhodamine 123 (Rh123) or doxorubicin (Dox) in cells. The RT-PCR and Western blot were performed to detect the gene expression and protein expression levels, respectively. Results: We found that ceritinib enhanced the efficacy of substrate chemotherapeutic agent in ABCB1-overexpressing K562/adr leukemia cells both in vitro and in vivo models, but neither in sensitive parental K562 leukemia cells nor in ABCC1-overexpressing HL-60/adr leukemia cells. Mechanistically, ceritinib significantly increased the intracellular accumulation of Rh123 or Dox but did neither alter ABCB1 expressions at both protein and mRNA levels nor block the phosphorylations of AKT and ERK1/2 at the concentration of MDR reversal. Importantly, ceritinib also increased the intracellular accumulation of Dox and enhanced the efficacy of Dox in primary leukemia cells in ex-vivo. Conclusion: Our results suggested that ceritinib enhanced the efficacy of substrate chemotherapeutic agent on inhibition of leukemia cell growth in vitro, in vivo and ex-vivo, which linked to block ABCB1 function, pumping out its substrate conventional chemotherapeutic agent, thereby increasing the intracellular accumulation. These suggest the combination of ceritinib and substrate chemotherapeutic drugs maybe an effective treatment of resistant leukemia patients with ABCB1-mediated MDR.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3