The Intracranial Aneurysm Gene THSD1 Connects Endosome Dynamics to Nascent Focal Adhesion Assembly

Author:

Rui Yan-Ning,Xu Zhen,Fang Xiaoqian,Menezes Miriam R.,Balzeau Julien,Niu Airu,Hagan John P.,Kim Dong H.

Abstract

Background/Aims: We recently discovered that harmful variants in THSD1 (Thrombospondin type-1 domain-containing protein 1) likely cause intracranial aneurysm and subarachnoid hemorrhage in a subset of both familial and sporadic patients with supporting evidence from two vertebrate models. The current study seeks to elucidate how THSD1 and patient-identified variants function molecularly in focal adhesions. Methods: Co-immunostaining and co-immunoprecipitation were performed to define THSD1 subcellular localization and interacting partners. Transient expression of patient-identified THSD1 protein variants and siRNA-mediated loss-of-function THSD1 were used to interrogate gene function in focal adhesion and cell attachment to collagen I in comparison to controls. Results: THSD1 is a novel nascent adhesion protein that co-localizes with several known markers such as FAK, talin, and vinculin, but not with mature adhesion marker zyxin. Furthermore, THSD1 forms a multimeric protein complex with FAK/talin/vinculin, wherein THSD1 promotes talin binding to FAK but not to vinculin, a key step in nascent adhesion assembly. Accordingly, THSD1 promotes mature adhesion formation and cell attachment, while its rare variants identified in aneurysm patients show compromised ability. Interestingly, THSD1 also localizes at different stages of endosomes. Clathrin-mediated but not caveolae-mediated endocytosis pathway is involved in THSD1 intracellular trafficking, which positively regulates THSD1-induced focal adhesion assembly, in contrast to the traditional role of endosomes in termination of integrin signals. Conclusions: The data suggest that THSD1 functions at the interface between endosome dynamics and nascent focal adhesion assembly that is impaired by THSD1 rare variants identified from intracranial aneurysm patients.

Publisher

S. Karger AG

Subject

Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3