Social Status and Arginine Vasotocin Neuronal Phenotypes in a Cichlid Fish

Author:

Almeida Olinda,Oliveira Rui F.

Abstract

The nonapeptide arginine vasotocin (AVT) and its mammalian homologue arginine vasopressin play a key role in the regulation of social behaviour across vertebrates. In teleost fishes, three AVT neuronal populations have been described in the preoptic area (POA): the parvocellular (pPOA), the magnocellular (mPOA) and the gigantocellular (gPOA). Neurons from each of these areas project both to the pituitary and to other brain regions, where AVT is supposed to regulate neural circuits underlying social behaviour. However, in the fish species studied so far, there is considerable variation in which AVT neuronal populations are involved in behavioural modulation and in the direction of the effect. In this study, the association between AVT neuronal phenotypes and social status was investigated in the Mozambique tilapia (Oreochromis mossambicus). This species is an African female mouth-brooding cichlid fish in which males form breeding aggregations in which dominant males establish territories and subordinate males to act as floaters. With respect to sex differences in AVT neuronal phenotypes, females have a larger number of AVT neurons in the pPOA and mPOA. Within males, AVT appeared associated with social subordination, as indicated by the larger cell body areas of AVT neurons in mPOA and gPOA nuclei of non-territorial males. There were also positive correlations between submissive behaviour and the soma size of AVT cells in all three nuclei and AVT cell number in the mPOA. In summary, the results provide evidence for an involvement of AVT in the modulation of social behaviour in tilapia, but it was not possible to identify specific roles for specific AVT neuronal populations. The results presented here also contrast with those previously published for another cichlid species with a similar mating system, which highlights the species-specific nature of the pattern of association between AVT and social behaviour even within the same taxonomic family.

Publisher

S. Karger AG

Subject

Behavioral Neuroscience,Developmental Neuroscience

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3