Sirtuin3 Alleviated Influenza A Virus-Induced Mitochondrial Oxidative Stress and Inflammation in Lung Epithelial Cells via Regulating Poly (ADP-Ribose) Polymerase 1 Activity

Author:

Yuan Juan,Li Ruina,Song He,Liu Xi

Abstract

Introduction: Influenza A virus (IAV) infection causes severe lung inflammation and injury, particularly in children. Sirtuin3 (Sirt3) was confirmed to be effective in protecting the lung against injury. This study aims to explore the function and mechanism of Sirt3 on influenza development in children. Methods: The Sirt3 level in serum samples from IAV-infected children and lung epithelial cells were detected using RT-qPCR, ELISA, and Western blot assays. Cell viability and apoptosis were determined by MTT and flow cytometry assays. Virus titration was conducted by determining TCID50. Cell inflammatory response was detected by a battery of inflammatory cytokines. The contents of ROS and ATP, mitochondrial membrane potential level, and oxygen-consumption rate were examined to reflect on oxidative stress and mitochondrial dysfunction. The activity of poly (ADP-ribose) polymerase 1 (PARP-1) was measured by colorimetry. Results: Sirt3 was downregulated in IAV-infected children’s serum samples and BEAS-2B cells. Overexpression of Sirt3 alleviated IAV replication and IAV-induced inflammatory injury, oxidative stress, and mitochondrial dysfunction in lung epithelial cells. Moreover, upregulation of Sirt3 deacetylated SOD2 and PARP-1 and inhibited the PARP-1 activity. Notably, the Sirt3 inhibitor (3-TYP) and PARP-1 activity agonist (nicotinamide) reversed the effects of Sirt3 overexpression on IAV replication and IAV-induced injury. Conclusion: Overexpression of Sirt3 attenuated IAV-evoked inflammatory injury and mitochondrial oxidative stress through the inhibition of PARP-1 activity in lung epithelial cells.

Publisher

S. Karger AG

Subject

Immunology,General Medicine,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3