Endothelial Cells Regulate Cardiac Myocyte Reorganisation Through β1-Integrin Signalling

Author:

Zhang Yu,Li Hai,Wei Renyue,Ma Jing,Zhao Yanhua,Lian Zhengxing,Liu Zhonghua

Abstract

Background: In normal hearts, capillaries are densely distributed throughout the myocardial tissue, and the cross-talk between myocytes and capillary endothelial cells plays a pivotal role in regulating cardiac development, maturation and function. Although previous studies have suggested a role for the endothelium in the organisation of nearby cardiomyocytes, the underlying mechanism has yet to be illustrated. Methods and Results: Using a transwell coculture system, we studied the paracrine effect of endothelial cells on cardiomyocytes and found that the regulation of cardiomyocyte spatial reorganisation and cytoskeletal dynamics by endothelial cells was coupled with β1-integrin induction. To determine the role of β1-integrin in this process, we preincubated myocytes with a β1-integrin function-blocking antibody before coculture. β1-integrin blockage abolished myocyte chemotactic activity and inhibited microtubule extension and stress fibre assembly. We further evaluated the therapeutic potential of combined endothelial cell-cardiac myocyte transplantation against ischemic cardiomyopathy in an acute myocardial infarction (AMI) mouse model. The results showed that myocytes and endothelial cells synergistically promoted ischemic myocardial repair, as evidenced by the robust engraftment and migration of implanted cells within the infarcted area, as well as the stimulation of angiogenesis, the attenuation of scar tissue and the improvement of cardiac function. Conclusion: Our study demonstrated the necessity of β1-integrin in the interactions between cardiomyocytes and endothelial cells and presented a novel combined transplantation approach that might hold promise for treating ischemic cardiomyopathy.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3