Long Non-Coding RNA H19 Acts as an Estrogen Receptor Modulator that is Required for Endocrine Therapy Resistance in ER+ Breast Cancer Cells

Author:

Basak Pratima,Chatterjee Sumanta,Bhat Vasudeva,Su Alice,Jin Hyerang,Lee-Wing Victoria,Liu Qian,Hu Pingzhao,Murphy Leigh C,Raouf Afshin

Abstract

Background/Aims: Blocking estrogen signaling with endocrine therapies (Tamoxifen or Fulverstrant) is an effective treatment for Estrogen Receptor-α positive (ER+) breast cancer tumours. Unfortunately, development of endocrine therapy resistance (ETR) is a frequent event resulting in disease relapse and decreased overall patient survival. The long noncoding RNA, H19, was previously shown to play a significant role in estrogen-induced proliferation of both normal and malignant ER+ breast epithelial cells. We hypothesized that H19 expression is also important for the proliferation and survival of ETR cells. Methods: Here we utilized established ETR cell models; the Tamoxifen (Tam)-resistant LCC2 and the Fulvestrant and Tam cross-resistant LCC9 cells. Gain and loss of H19 function were achieved through lentiviral transduction as well as pharmacological inhibitors of the Notch and c-Met receptor signaling pathways. The effects of altered H19 expression on cell viability and ETR were assessed using three-dimensional (3D) organoid cultures and 2D co-cultures with low passage tumour-associated fbroblasts (TAFs). Results: Here we report that treating ETR cells with Tam or Fulvestrant increases H19 expression and that it’s decreased expression overcomes resistance to Tam and Fulvestrant in these cells. Interestingly, H19 expression is regulated by Notch and HGF signaling in the ETR cells and pharmacological inhibitors of Notch and c-MET signaling together significantly reverse resistance to Tam and Fulvestrant in an H19-dependent manner in these cells. Lastly, we demonstrate that H19 regulates ERα expression at the transcript and protein levels in the ETR cells and that H19 protects ERα against Fulvestrant-mediated downregulation of ERα protein. We also observed that blocking Notch and the c-MET receptor signaling also overcomes Fulvestrant and Tam resistance in 3D organoid cultures by decreasing ERα and H19 expression in the ETR cells. Conclusion: In endocrine therapy resistant breast cancer cells Fulvestrant is ineffective in decreasing ERα levels. Our data suggest that in the ETR cells, H19 expression acts as an ER modulator and that its levels and subsequently ERα levels can be substantially decreased by blocking Notch and c-MET receptor signaling. Consequently, treating ETR cells with these pharmacological inhibitors helps overcome resistance to Fulvestrant and Tamoxifen.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3