Involvement of the Multidrug and Toxic Compound Extrusion Transporter in Testosterone Release from Cultured Pig Leydig Cells

Author:

Goda Mitsuhiro,Oda Kana,Oda Atsuko,Kobayashi Naoki,Otsuka Masato

Abstract

Testosterone is considered to be released from Leydig cells via passive diffusion because of its hydrophobicity; however, the exact mechanism underlying testosterone secretion and the transporter involved are both unknown. Multidrug and toxic compound extrusion (MATE) transporters are predominantly found in the kidneys and liver and are thought to function in the elimination of metabolic organic cations during the final step of excretion in the kidney. In contrast, mMATE2 has been shown to be predominantly expressed in testicular Leydig cells. Although the physiological function of mMATE2 in Leydig cells is unknown, we hypothesized that mMATE2 acts as a testosterone exporter and is responsible for the secretion of testosterone from Leydig cells. Therefore, in the present study, we investigated the involvement of the MATE transporter in testosterone secretion from pig Leydig cells. Immunohistochemical analysis with anti-pig MATE2 antiserum indicated that the MATE transporter is present in pig Leydig cells. Additionally, treatment with the MATE inhibitors cimetidine and pyrimethamine reduced the testosterone secretion from pig Leydig cells but increased the intracellular testosterone levels. Estradiol release and intracellular estradiol level induced by human chorionic gonadotropin (hCG) further increased with cimetidine treatment. These results indicated that testosterone produced by hCG treatment is secreted from Leydig cells via the MATE transporter; however, in the presence of cimetidine or pyrimethamine, this MATE transporter-mediated secretion was inhibited, resulting in increased intracellular testosterone levels and estradiol production in Leydig cells. Thus, the MATE transporter may be responsible for testosterone secretion from Leydig cells.

Publisher

S. Karger AG

Subject

Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3