Author:
Ouyang Jing,Sun Fengjun,Feng Wei,Xie Yonghong,Ren Lijuan,Chen Yongchuan
Abstract
Backgroud: Antibiotic treatment for infections caused by vancomycin-intermediate Staphylococcus aureus (VISA) strains is challenging, and only a few effective and curative methods have been developed to combat these strains. This study aimed to investigate the antimicrobial activity of galangin against S. aureus and its effects on the murein hydrolases of VISA strain Mu50. This is the first report on these effects of galangin, and it may help to improve the treatment for VISA infections by demonstrating the effective use of galangin. Methods: Firstly, the minimum inhibitory concentration (MIC) and growth curve were used to investigate the antimicrobial activity of galangin against S. aureus. Secondly, transmission electron microscopy (TEM) was used to observe morphological changes of VISA strain Mu50. Thirdly, Triton X-100-induced autolysis and cell wall hydrolysis assays were performed to determine the activities of the murein hydrolases of Mu50. Finally, fluorescence real-time quantitative PCR was used to investigate the expression of the murein hydrolase-related Mu50 genes. Results: The results indicated that the MIC of galangin was 32 μg/mL against ATCC25293, N315, and Mu50, and galangin could significantly suppress the bacterial growth (p < 0.05) with concentrations of 4, 8 and 16 μg/mL, compared with control group (0 μg/mL). To explore the possible reasons of bacteriostatic effects of galangin, we observed morphological changes using TEM which showed that the division of Mu50 daughter cells treated with galangin was obviously inhibited. Considering the vital role of murein hydrolases in cellular division, assays were performed, and galangin markedly decreased Triton X-100-induced autolysis and cell wall hydrolysis. Galangin also significantly inhibited the expression of the murein hydrolase genes (atl, lytM, and lytN) and their regulatory genes (cidR, cidA, and cidB). Conclusions: Our findings indicated that galangin can effectively inhibit murein hydrolase activity as well as the growth of VISA strain Mu50.
Subject
Infectious Diseases,Pharmacology (medical),Drug Discovery,Pharmacology,Oncology,General Medicine
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献