Diesel Particulate Matter Permeation into Normal Human Skin and Intervention Using a Topical Ceramide Formulation

Author:

Shin Kyong-Oh,Ishida Kenya,Mihara Hisashi,Choi Yerim,Park Jae-HoORCID,Park Soo-Hyun,Hwang Jin-Taek,Wakefield Joan S.,Obata Yasuko,Uchida YoshikazuORCID,Park Kyungho

Abstract

Introduction: Diesel particulate matter (DPM) emitted from diesel engines is a major source of air pollutants. DPM is composed of elemental carbon, which adsorbs organic compounds including toxic polycyclic aromatic hydrocarbons (PAHs). The skin, as well as airways, is directly exposed to DPM, and association of atopic dermatitis, psoriasis flares, and premature skin aging with air pollutant levels has been documented. In skin, the permeation of DPM and DPM-adsorbed compounds is primarily blocked by the epidermal permeability barrier deployed in the stratum corneum. Depending upon the integrity of this barrier, certain amounts of DPM and DPM-adsorbed compounds can permeate into the skin. However, this permeation into human skin has not been completely elucidated. Methods: We assessed the permeation of PAHs (adsorbed to DPM) into skin using ex vivo normal (barrier-competent) organ-cultured human skin after application of DPM. Two major PAHs, 2-methylnaphthalene and triphenylene, and a carcinogenic PAH, benzo(a)pyrene, all found in DPM, were measured in the epidermis and dermis using liquid chromatography electrospray ionization tandem mass spectrometry. In addition, we investigated whether a topical formulation can attenuate the permeation of DPM into skin. Results: 2-Methylnaphthalene, triphenylene, and benzo(a)pyrene were recovered from the epidermis. Although these PAHs were also detected in the dermis after DPM application, these PAH levels were significantly lower than those found in the epidermis. We also demonstrated that a topical formulation that has the ability to form more uniform membrane structures can significantly suppress the permeation of PAHs adsorbed to DPM into the skin. Conclusion: Toxic compounds adsorbed by DPM can permeate even barrier-competent skin. Hence, barrier-compromised skin, such as in atopic dermatitis, psoriasis, and xerosis, is even more vulnerable to air pollutants. A properly formulated topical mixture that forms certain membrane structures on the skin surface can effectively prevent permeation of exogenous substances, including DPM, into skin.

Publisher

S. Karger AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3