A Membrane-Targeted Peptide Inhibiting PtxA of Phosphotransferase System Blocks Streptococcus mutans

Author:

Xiang Shao-Wen,Shao Jun,He Jian,Wu Xin-Yu,Xu Xiao-Hu,Zhao Wang-Hong

Abstract

Streptococcus mutans, the primary cause of dental caries, takes up carbohydrates through the phosphoenolpyruvate sugar phosphotransferase system (PTS). This study aimed to identify a novel membrane-targeted antimicrobial peptide (AMP) that could also target the L-ascorbate-specific PtxA component of the S. mutans PTS system. C10-KKWW was identified and selected using virtual screening of a lipopeptide library, a minimum inhibiting concentration (MIC) assay, cytotoxicity assays and a hemolysis assay. Surface plasmon resonance confirmed that C10-KKWW had a high binding affinity for PtxA. Combining with scanning electron microscopy and cell permeability assay, it was shown that the effects of C10-KKWW could be attributed to both membrane and PtxA. Wild type (WT) S. mutans, a ptxA deletion mutant (ΔptxA), and a mutant-complemented strain (CptxA), were cultured consistently in brain heart infusion (BHI) medium, tryptone-vitamin medium supplemented with 15 mM L-ascorbate (TVL), or for 5 h in BHI supplemented with 7.4 mM sodium L-ascorbate. Compared to ∆ptxA, in WT S. mutans and CptxA, C10-KKWW had a stronger MIC (3.9 μg/mL), and distinctively decreased biofilm viability. The extracellular concentrations of L-ascorbate/sodium L-ascorbate were not changed before and after WT treated with C10-KKWW. L-ascorbate-induced operon genes, or other PTS genes, were significantly suppressed by C10-KKWW. In conclusion, C10-KKWW has been developed; it acts through interaction with the bacterial membrane and interferes with L-ascorbate translocation to inhibit S. mutans growth and eradicate its biofilm. C10-KKWW may be especially effective at optimal oral ascorbate levels. A combination of C10-KKWW with sodium L-ascorbate might also be a novel strategy for dental caries treatment.

Publisher

S. Karger AG

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3