Taurine Protects Mouse Spermatocytes from Ionizing Radiation-Induced Damage Through Activation of Nrf2/HO-1 Signaling

Author:

Yang Wenjun,Huang Jinfeng,Xiao Bang,Liu Yan,Zhu Yiqing,Wang Fang,Sun Shuhan

Abstract

Background/Aims: The increasing prevalence of ionizing radiation exposure has inevitably raised public concern over the potential detrimental effects of ionizing radiation on male reproductive system function. The detection of drug candidates to prevent reproductive system from damage caused by ionizing radiation is urgent. We aimed to investigate the protective role of taurine on the injury of mouse spermatocyte-derived cells (GC-2) subjected to ionizing radiation. Methods: mouse spermatocytes (GC-2 cells) were exposed to ionizing radiation with or without treatment of Taurine. The effect of ionizing radiation and Taurine treatment on GC-2 cells were evaluated by cell viability assay (CCK8), cell cycle and apoptosis. The relative protein abundance change was determined by Western blotting. The siRNA was used to explore whether Nrf2 signaling was involved in the cytoprotection of Taurine. Results: Taurine significantly inhibited the decrease of cell viability, percentage of apoptotic cells and cell cycle arrest induced by ionizing radiation. Western blot analysis showed that taurine significantly limited the ionizing radiation-induced down-regulation of CyclinB1 and CDK1, and suppressed activation of Fas/FasL system pathway. In addition, taurine treatment significantly increased the expression of Nrf2 and HO-1 in GC-2 cells exposed to ionizing radiation, two components in antioxidant pathway. The above cytoprotection of Taurine was blocked by siNrf2. Conclusion: Our results demonstrate that taurine has the potential to effectively protect GC-2 cells from ionizing radiation- triggered damage via upregulation of Nrf2/HO-1 signaling.

Publisher

S. Karger AG

Subject

Physiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3