The Chromatin State during Gonadal Sex Determination

Author:

Dupont Shannon,Capel Blanche

Abstract

At embryonic day (E) 10.5, prior to gonadal sex determination, XX and XY gonads are bipotential and able to differentiate into either a testis or an ovary. At this point, they are transcriptionally and morphologically indistinguishable. Sex determination begins around E11.5 in the mouse when the supporting cell lineage commits to either Sertoli or granulosa cell fate. Testis-specific factors such as SRY and SOX9 drive differentiation of bipotential-supporting cells into the Sertoli cell pathway, whereas ovary-specific factors like WNT4 and FOXL2 guide differentiation into granulosa cells. It is known that these 2 pathways are mutually antagonistic, and repression of the alternative fate is critical for maintenance of the testis or ovary programs. While we understand much about the transcription factor networks guiding the process of sex determination, it is only more recently that we have begun to understand how this process is epigenetically controlled. Studies in the past decade have demonstrated the importance of the chromatin state for gene expression and cell fate commitment, with histone modifications and DNA accessibility having a direct role in gene regulation. It is now clear that the chromatin state during sex determination is dynamic and likely critical for the establishment and/or maintenance of the transcriptional programs. Prior to sex determination, supporting cells have similar chromatin structure and histone modification profiles, reflecting the bipotential nature of these cells. After differentiation to Sertoli or granulosa cells, the chromatin state acquires sex-specific profiles. The proteins that regulate the deposition of histone modifications or the opening of compact chromatin likely play an important role in Sertoli and granulosa cell fate commitment and gonad development. Here, we describe studies profiling the chromatin state during gonadal sex determination and one example in which depletion of <i>Cbx2</i>, a member of the Polycomb Repressive Complex 1 (PRC1), causes male-to-female sex reversal due to a failure to repress the ovarian pathway.

Publisher

S. Karger AG

Subject

Developmental Biology,Embryology,Endocrinology, Diabetes and Metabolism

Reference17 articles.

1. Arango NA, Lovell-Badge R, Behringer RR. Targeted mutagenesis of the endogenous mouse Mis gene promoter: in vivo definition of genetic pathways of vertebrate sexual development. Cell. 1999;99(4):409–19.

2. Arnold AP. Four Core Genotypes and XY* mouse models: Update on impact on SABV research. Neurosci Biobehav Rev. 2020;119:1–8.

3. Barrionuevo F, Bagheri-Fam S, Klattig J, Kist R, Taketo MM, Englert C, et al. Homozygous inactivation of Sox9 causes complete XY sex reversal in mice. Biol Reprod. 2006;74:195–201.

4. Biason-Lauber A, Konrad D, Meyer M, deBeaufort C, Schoenle EJ. Ovaries and female phenotype in a girl with 46,XY karyotype and mutations in the CBX2 gene. Am J Hum Genet. 2009;84:658–63.

5. Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet. 2012;13(5):343–57.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3