Antagonistic Effects of Insulin and TGF-β3 during Chondrogenic Differentiation of Human BMSCs under a Minimal Amount of Factors

Author:

Hara Emilio Satoshi,Ono Mitsuaki,Yoshioka Yuya,Ueda Junji,Hazehara Yuri,Pham Hai Thanh,Matsumoto Takuya,Kuboki Takuo

Abstract

Growth factors are crucial regulators of cell differentiation towards tissue and organ development. Insulin and transforming growth factor-β (TGF-β) have been used as the major factors for chondrogenesis in vitro, by activating the AKT and Smad signaling pathways. Previous reports demonstrated that AKT and Smad3 have a direct interaction that results in the inhibition of TGF-β-mediated cellular responses. However, the result of this interaction between AKT and Smad3 during the chondrogenesis of human bone marrow-derived stem/progenitor cells (hBMSCs) is unknown. In this study, we performed functional analyses by inducing hBMSCs into chondrogenesis with insulin, TGF-β3 or in combination, and found that TGF-β3, when applied concomitantly with insulin, significantly decreases an insulin-induced increase in mRNA levels of the master regulator of chondrogenesis, SOX9, as well as the regulators of the 2 major chondrocyte markers, ACAN and COL2A1. Similarly, the insulin/TGF-β3-treated group presented a significant decrease in the deposition of cartilage matrix as detected by safranin O staining of histological sections of hBMSC micromass cultures when compared to the group stimulated with insulin alone. Intracellular analysis revealed that insulin-induced activation of AKT suppressed Smad3 activation in a dose-dependent manner. Accordingly, insulin/TGF-β3 significantly decreased the TGF-β3-induced increase in mRNA levels of the direct downstream factor of TGF-β/Smad3, CCN2/CGTF, compared to the group stimulated with TGF-β3 alone. On the other hand, insulin/TGF-β3 stimulation did not suppress insulin-induced expression of the downstream targets TSC2 and DDIT4/REDD1. In summary, insulin and TGF-β3 have antagonistic effects when applied concomitantly, with a minimal number of factors. The application of an insulin/TGF-β3 combination without further supplementation should be used with caution in the chondrogenic differentiation of hBMSCs.

Publisher

S. Karger AG

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3