Heat Killed Attenuated Leishmania Induces Apoptosis of HepG2 Cells Through ROS Mediated p53 Dependent Mitochondrial Pathway

Author:

Bose Dipayan,Banerjee Somenath,Das Subhadip,Chatterjee Nabanita,Saha Krishna Das

Abstract

Background/Aims: Cytotoxic effect of attenuated Leishmania on liver cancer cells by inducing ROS generation. Methods: Spectrophotometric study to analyze cell death and levels of different active caspases. Flow cytometric study was done to analyze apoptosis induction and ROS generation and levels of different protein. Western blot analysis was performed to study the levels of protein. Confocal microscopy was done to ascertain the expression of different apoptotic markers. Results: We have now observed that attenuated Leishmania donovani UR6 also has potentiality towards growth inhibition of HepG2 cells and investigated the mechanism of action. The effect is associated with increased DNA fragmentation, rise in number of annexinV positive cells, and cell cycle arrest at G1 phase. The detection of unregulated levels of active PARP, cleaved caspases 3 and 9, cytosolic cytochrome C, Bax, and Bad, along with the observed downregulation of Bcl-2 and loss of mitochondrial membrane potential suggested the involvement of mitochondrial pathway. Enhanced ROS and p53 levels regulate the apoptosis of HepG2 cells. NAC was found to inhibit p53 production but PFT-α has no effect on ROS generation. In conclusion, Leishmania donovani UR6 efficiently induces apoptosis in HepG2 cells through ROS mediated p53 dependent mitochondrial pathway. Conclusion: It has been reported earlier that some parasites show prominent cytotoxic effect and prevent tumor growth. From our study we found that Leishmania donovani UR6 efficiently induced apoptosis in HepG2 cells through ROS mediated p53 dependent mitochondrial pathway. This study has rejuvenated the age old idea of bio-therapy.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3