Downregulation of Rad51 Expression and Activity Potentiates the Cytotoxic Effect of Osimertinib in Human Non-Small Cell Lung Cancer Cells

Author:

Ko Jen-Chung,Chen Jyh-Cheng,Huang Ching-Hsiu,Chen Pei-Jung,Chang Qiao-Zhen,Mu Bo-Cheng,Chen Jun-Jie,Tai Tzu-Yuan,Suzuki Kasumi,Wang Yi-Xuan,Lin Yun-WeiORCID

Abstract

Introduction: Osimertinib (AZD9291) is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that has shown significant clinical benefits in patients with EGFR-sensitizing mutations or the EGFR T790M mutation. The homologous recombination (HR) pathway is crucial for repairing DNA double-strand breaks (DSBs). Rad51 plays a central role in HR, facilitating the search for homology and promoting DNA strand exchange between homologous DNA molecules. Rad51 is overexpressed in numerous types of cancer cells. B02, a specific small molecule inhibitor of Rad51, inhibits the DNA strand exchange activity of Rad51. Previous studies have indicated that B02 disrupted Rad51 foci formation in response to DNA damage and inhibited DSBs repair in human cells and sensitized them to chemotherapeutic drugs in vitro and in vivo. However, the potential therapeutic effects of combining osimertinib with a Rad51 inhibitor are not well understood. The aim of this study was to elucidate whether the downregulation of Rad51 expression and activity can enhance the osimertinib-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells. Methods: We used the MTS, trypan blue dye exclusion and colony-formation ability assay to determine whether osimertinib alone or in combination with B02 had cytotoxic effects on NSCLC cell lines. Real-time polymerase chain reaction was conducted to measure the amounts of Rad51 mRNA. The protein levels of phosphorylated AKT and Rad51 were determined by Western blot analysis. Results: We found that osimertinib reduced Rad51 expression by inactivating AKT activity. Rad51 knockdown using small interfering RNA or AKT inactivation through the phosphatidylinositol 3-kinase inhibitor LY294002 or si-AKT RNA transfection enhanced the cytotoxic and growth inhibitory effects of osimertinib. In contrast, AKT-CA (a constitutively active form of AKT) vector-enforced expression could mitigate the cytotoxic and cell growth inhibitory effects of osimertinib. Furthermore, B02 significantly enhanced the cytotoxic and cell growth inhibitory effects of osimertinib in NSCLC cells. Compared to parental cells, the activation of AKT and Rad51 expression in osimertinib-resistant cells could not be significantly inhibited by osimertinib treatment. Moreover, the increased expression of Rad51 is associated with the resistance mechanism in osimertinib-resistant H1975 and A549 cells. Conclusion: Collectively, the downregulation of Rad51 expression and activity enhances the cytotoxic effect of osimertinib in human NSCLC cells.

Publisher

S. Karger AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3