Knockdown of Long Non-Coding RNA RP11-445H22.4 Alleviates LPS-Induced Injuries by Regulation of MiR-301a in Osteoarthritis

Author:

Sun Taitao,Yu Jian,Han Liang,Tian Shuo,Xu Bin,Gong Xianbin,Zhao Qiang,Wang Yang

Abstract

Background/Aims: Several long non-coding RNAs (lncRNAs) play vital roles in osteoarthritis (OA), whereas the role of lncRNA RP11-445H22.4 in OA remains unclear. The study aimed to investigate the effect of lncRNA RP11-445H22.4 on lipopolysaccharide (LPS)-induced cell viability, apoptosis and inflammatory injury of OA. Methods: The expression of RP11-445H22.4, miR-301a and CXCR4 in human cartilage ATDC5 cells were altered by transfection, and then cells were exposed to 5 µg/ml LPS for 12 h. Then cell viability, apoptosis, apoptosis-related factors and inflammatory cytokines were analyzed by CCK-8, flow cytometry, western blot, RT-qPCR and ELISA, respectively. Dual-luciferase reporter assay was performed to assess the binging sites of RP11-445H22.4 and miR-301a. The signal pathways of NF-κB and MAPK/ ERK were determined by western blot. Results: LPS reduced cell viability, increased apoptosis and stimulated release of IL-1β, IL-6, IL-8 and TNF-α. However, RP11-445H22.4 inhibition significantly rescued LPS-induced injuries by promoting cell viability, suppressing apoptosis and inflammatory cytokines secretions in ATDC5 cells. In addition, miR-301a directly bound to RP11-445H22.4, and suppression of miR-301a inversed the effects of RP11-445H22.4 inhibition. Furthermore, CXCR4 was a direct target of miR-301a, and CXCR4 silencing increased cell viability, decreased apoptosis and inflammatory cytokines secretions in LPS-treated ATDC5 cells. Besides, we found that CXCR4 silencing blocked LPS-activated NF-κB and MAPK/ERK pathways. Conclusions: The study indicated that lncRNA RP11-445H22.4-miR-301a-CXCR4 axis played an important role in cartilage ATDC5 cells and provided a theoretical basis of lncRNA RP11-445H22.4 in OA.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3