Epithelial-Mesenchymal Transition (EMT) as a Therapeutic Target

Author:

Jonckheere Sven,Adams Jamie,De Groote Dominic,Campbell Kyra,Berx Geert,Goossens Steven

Abstract

Metastasis is the spread of cancer cells from the primary tumour to distant sites and organs throughout the body. It is the primary cause of cancer morbidity and mortality, and is estimated to account for 90% of cancer-related deaths. During the initial steps of the metastatic cascade, epithelial cancer cells undergo an epithelial-mesenchymal transition (EMT), and as a result become migratory and invasive mesenchymal-like cells while acquiring cancer stem cell properties and therapy resistance. As EMT is involved in such a broad range of processes associated with malignant transformation, it has become an increasingly interesting target for the development of novel therapeutic strategies. Anti-EMT therapeutic strategies could potentially not only prevent the invasion and dissemination of cancer cells, and as such prevent the formation of metastatic lesions, but also attenuate cancer stemness and increase the effectiveness of more classical chemotherapeutics. In this review, we give an overview about the pros and cons of therapies targeting EMT and discuss some already existing candidate drug targets and high-throughput screening tools to identify novel anti-EMT compounds.

Publisher

S. Karger AG

Subject

Histology,Anatomy

Reference181 articles.

1. Adams J, Casali A, Campbell K. Methods to generate and assay for distinct stages of cancer metastasis in adult Drosophila melanogaster. Methods Mol Biol. 2021;2179:161–170.

2. Aiello NM, Maddipati R, Norgard RJ, Balli D, Li J, Yuan S, et al. EMT Subtype Influences Epithelial Plasticity and Mode of Cell Migration. Dev Cell. 2018 Jun;45(6):681–95.e4.

3. Arai K, Eguchi T, Rahman MM, Sakamoto R, Masuda N, Nakatsura T, et al. A Novel High-Throughput 3D Screening System for EMT Inhibitors: A Pilot Screening Discovered the EMT Inhibitory Activity of CDK2 Inhibitor SU9516. PLoS One. 2016;11(9):e0162394.

4. Aref AR, Huang RY, Yu W, Chua KN, Sun W, Tu TY, et al. Screening therapeutic EMT blocking agents in a three-dimensional microenvironment. Integr Biol (Camb). 2013 Feb;5(2):381–9.

5. Ayob AZ, Ramasamy TS. Cancer stem cells as key drivers of tumour progression. J Biomed Sci. 2018 Mar;25(1):20.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3