Activation of Insulin-Like Growth Factor-2 Ameliorates Retinal Cell Damage and Exerts Protection in in vitro Model of Diabetic Retinopathy

Author:

Zhao Yantao,Xiong Zhaohui,Chen Yuping,Wang Guoqiang,Zhao Yan

Abstract

<b><i>Background:</i></b> The major event in the development of diabetes-related blindness and vision impairment is the onset of retinal cell damage. Overall awareness of insulin-like growth factor-2 (IGF2) mechanisms emphasizes its protective behavior in retinal cells that help to provide new information about the development of treatment for retinal complications. <b><i>Objectives:</i></b> This study analyzes the effect of in vitro changes associated with the cell survival and rescue mechanism in IGF2 inhibition and activation using chromeceptin and IGF2 peptides in ARPE-19 cells cultured in high glucose conditions. <b><i>Method:</i></b> Cell death was induced using high glucose (15 mmol/L), IGF2 inhibition was done using chromeceptin (1 µM) (Sigma Aldrich, Saint Louis, MO, USA), and IGF2 activation was done using IGF2 peptide (10 ng/mL). The cells were analyzed for changes in cell proliferation, apoptosis markers, antioxidant molecules, and alteration of cytokines. <b><i>Results:</i></b> The study demonstrated that cells lacking IGF2 exhibited a significant increase in reactive oxygen levels with apoptosis patterns. Also, gene expression analysis by qRT-PCR demonstrated a significant increase in Yes-associated protein 1, CDK2, TNF-α, and BIRC5 genes in cells under high glucose stress and IGF inhibition compared to control. Further, the cytokine analysis also revealed that cells devoid of IGF2 activated an increase in cytokines such as IL-8, CX43, ICAM-1, IL-17, CCL3, and MCP-1 and decreased paraoxonase compared to normal control cells. On the other hand, ARPE-19 cells grown in high glucose shows that IGF2 increases the survival genes with reduced levels of inflammatory cytokines. <b><i>Conclusion:</i></b> The finding of the investigation, therefore, shows that the use of IGF2 activators may prevent the progression of ocular dysfunction in the control of diabetes-related complications.

Publisher

S. Karger AG

Subject

Endocrine and Autonomic Systems,Neurology,Endocrinology,Immunology

Reference39 articles.

1. Ramachandran A, Snehalatha C. Current scenario of diabetes in India. J Diabetes. 2009 Mar;1(1):18–28.

2. Raman P, Singal AK, Behl A. Effect of insulin-like growth factor-1 on diabetic retinopathy in pubertal age patients with type 1 diabetes. Asia Pac J Ophthalmol. 2019 Jul–Aug;8(4):319–23.

3. Poulaki V, Joussen AM, Mitsiades N, Mitsiades CS, Iliaki EF, Adamis AP. Insulin-like growth factor-I plays a pathogenetic role in diabetic retinopathy. Am J Pathol. 2004 Aug;165(2):457–69.

4. Spraul CW, Kaven C, Amann J, Lang GK, Lang GE. Effect of insulin-like growth factors 1 and 2, and glucose on the migration and proliferation of bovine retinal pigment epithelial cells in vitro. Ophthalmic Res. 2000 Sep–Oct;32(5):244–8.

5. Meyer-Schwickerath R, Pfeiffer A, Blum WF, Freyberger H, Klein M, Lösche C, et al. Vitreous levels of the insulin-like growth factors I and II, and the insulin-like growth factor binding proteins 2 and 3, increase in neovascular eye disease. Studies in nondiabetic and diabetic subjects. J Clin Invest. 1993 Dec;92(6):2620–5.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3