Increased Lipid Accumulation under Hypoxia in SZ95 Human Sebocytes

Author:

Choi KeunOh,Jin Mirim,Zouboulis Christos C.,Lee YoungJooORCID

Abstract

<b><i>Background:</i></b> Excessive sebum is produced by specialized cells called sebocytes and is considered a cause or consequence of acne, sebaceous cysts, hyperplasia, and sebaceous adenoma. <b><i>Objective:</i></b> To report changes in lipid accumulation in human sebocytes under hypoxia, which occurs under conditions of seborrhea. <b><i>Methods:</i></b> Sebocytes from the immortalized human gland cell line SZ95 were cultured under conditions of hypoxia for 48 h; lipid formation was confirmed by Nile red and Oil Red O staining. To investigate whether HIF-1α plays a role in lipid accumulation, SZ95 cells transfected or treated with dimethyloxalylglycine (DMOG) were assessed by Nile red. For protein expression of the sterol regulatory element-binding protein-1 (SREBP-1) and perilipin 2 (PLIN2), Western blot analysis was performed. Differentially expressed genes (DEGs) in SZ95 sebocytes under hypoxia were revealed by RNA-Seq analyses, and the statistical significance of the correlation between hypoxic and acne/non-acne skin was evaluated using gene set enrichment analysis. <b><i>Results:</i></b> Hypoxia induces lipid accumulation in SZ95 sebocytes. In addition, the levels of SREBP-1 and PLIN2 were regulated by HIF-1α in SZ95 sebocytes under hypoxia. RNA-Seq analyses of DEGs in SZ95 sebocytes under hypoxia revealed 256 DEGs, including several lipid droplet-associated genes. DEGs between acne and non-acne skin are significantly enriched in hypoxia gene sets. We also detected 93 differentially expressed inflammatory mediators. <b><i>Conclusions:</i></b> To the best of our knowledge, this study is the first to show that a hypoxic microenvironment can increase lipogenesis and provides a link between seborrhea and inflammation.

Publisher

S. Karger AG

Subject

Dermatology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3