Porous Chitosan/Nano-Hydroxyapatite Composite Scaffolds Incorporating Simvastatin-Loaded PLGA Microspheres for Bone Repair

Author:

Li Yu,Zhang Zhanzhao,Zhang Zhiyong

Abstract

The combination of bone tissue scaffolds with osteogenic induction factors is an effective strategy to facilitate bone healing processes. Here, chitosan (CS)/nano-hydroxyapatite (HA) scaffolds containing simvastatin (SIM)-loaded PLGA microspheres were fabricated by combining a freeze-drying technique with a modified water-oil-water emulsion method. The CS/HA weight ratio of 1:2 was selected by analyzing the effect of HA content on the micro-architecture, mechanical strength, and biocompatibility of the scaffold. Drug release kinetics showed that the SIM encapsulated in the scaffold was released in a sustained manner for up to 30 days. In vitro bioactivity study in rat bone marrow-derived mesenchymal stem cells showed that the SIM-loaded scaffolds had a strong ability in accelerating cell proliferation and inducing osteogenic differentiation. Moreover, an in vivo experiment using a rat calvarial defect model also documented that the SIM-loaded scaffolds had a remarkable effect on bone-promoting regeneration. The results of this study suggest that the SIM-loaded CS/HA scaffold is feasible and effective in bone repair and thus may provide a promising route for the treatment of critical-sized bone defects.

Publisher

S. Karger AG

Subject

Histology,Anatomy

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3