Chemoprevention with Enalapril and Aspirin in Men1(+/T) Knockout Mouse Model

Author:

Manoharan Jerena,Fendrich Volker,Di Fazio Pietro,Bollmann Carmen,Roth Silvia,Joos Barbara,Mintziras Ioannis,Albers Max B.,Ramaswamy Annette,Bertolino  Philippe,Zhang Chang X.,Slater Emily P.,Bartsch Detlef K.,Lopez-Lopez Caroline L.

Abstract

Pancreatic neuroendocrine neoplasias (pNEN) are the most common cause of death in adult patients with multiple endocrine neoplasia type 1 (MEN1). So far, only few chemopreventive strategies (e.g., with somatostatin analogues) have been evaluated for MEN1 associated pNENs. In this experimental study on 75 Men1(+/T) knockout mice, the effect of aspirin (n = 25) and an inhibitor of angiotensin-I converting enzyme (enalapril, n = 25) compared to controls (n = 25) were evaluated as single chemopreventive strategies for pNENs after 6, 9, 12, 15, and 18 months. After each study period, mice were sacrificed and the resected pancreata were evaluated by histopathological analysis, immunostaining, and real-time PCR. PNEN size and number was measured. Aspirin and enalapril lead to a pNEN size reduction of 80% (167,518 vs. 838,876 µm2, p < 0.001) and 79% (174,758 vs. 838,876 µm2, p < 0.001) compared to controls. Furthermore, aspirin and enalapril treatment resulted in a significant reduction of the number of pNENs by 33%, (p = 0.04) and 41% (p = 0.002) respectively. The apoptosis marker caspase 3 revealed a higher positive expression in pNEN of treated Men1(+/T) mice. Immunostaining of VEGF in pNEN detected a downregulation of its expression in treated Men1(+/T) mice compared to the control group. REL A transcript was significantly downregulated in 18-months treated enalapril Men1(+/T) mice, but not in aspirin-treated Men1(+/T) mice. There was no significant difference in the Ki-67 index. Using a transgenic mouse model that imitates human MEN1, this study provides first evidence that aspirin and enalapril are effective chemopreventive agents that aid in the progression of pNENs.

Publisher

S. Karger AG

Subject

Cellular and Molecular Neuroscience,Endocrine and Autonomic Systems,Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3