Impact of Arachidonic Acid and the Leukotriene Signaling Pathway on Vasculogenesis of Mouse Embryonic Stem Cells

Author:

Huang Yu-Han,Sharifpanah Fatemeh,Becker Sven,Wartenberg Maria,Sauer Heinrich

Abstract

Embryonic stem (ES) cells can differentiate into various kinds of cells, such as endothelial and hematopoietic cells. In addition, some evidence suggests that inflammatory mediators such as leukotrienes (LTs), which include the 5-lipoxygenase (LOX) family, can regulate endothelial cell differentiation. In the present study, the eicosanoid precursor arachidonic acid (AA) stimulated vasculogenesis of ES cells by increasing the number of fetal liver kinase-1+ vascular progenitor cells as well as vascular structures positive for platelet endothelial cell adhesion protein-1 and vascular endothelial cadherin. The stimulation of vasculogenesis and expression of the rate-limiting enzyme in the LT signaling pathway, 5-LOX-activating protein (FLAP), was blunted upon treatment with the FLAP inhibitors AM643 and REV5901. Vasculogenesis was significantly restored upon exogenous addition of LTs. Downstream of FLAP, the LTB4 receptor (BLT1) blocker U75302, the BLT2 receptor blocker LY255283 as well as the cysteinyl LT blocker BAY-u9773 inhibited vasculogenesis of ES cells. AA treatment of differentiating ES cells increased reactive oxygen species (ROS) generation, which was not affected upon either FLAP or cyclooxygenase-2 inhibition. Prevention of ROS generation by either the free radical scavengers vitamin E and N-(2-mercaptopropionyl)glycine or the NADPH oxidase inhibitor VAS2870 downregulated vasculogenesis of ES cells and blunted the provasculogenic effect of AA. In summary, our data demonstrate that proinflammatory AA stimulates vasculogenesis of ES cells via the LT pathway by mechanisms involving ROS generation.

Publisher

S. Karger AG

Subject

Histology,Anatomy

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3